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ABSTRACT

Heuristic classifiers which distinguish between uninfected and infected members of
some class of program objects have usually been constructed by hand. We
automatically construct multiple neural network classifiers which can detect
unknown Win32 viruses, following a technique described in previous work (Kephart
et al, 1995) on boot virus heuristics.

These individual classifiers have a false positive rate too high for real-world
deployment. We find that, by combining the individual classifier outputs using a
voting procedure, the risk of false positives is reduced to an arbitrarily low level,
with only a slight increase in the false negative rate. Regular heuristics retraining on
updated sets of exemplars (both infected and uninfected) is practical if the false
positive rate is low enough.
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INTRODUCTION

Stateless heuristic classifiers have augmented virus scanners with the ability to detect new vi-
ruses since the early days of virus scanners.1 (This is as opposed to classifiers that use a history
of object states or state changes, such as heuristics that use a checksum database, or heuristics
that use audit trail data.) These classifiers have been constructed for individual classes of viruses,
largely by hand, with various ad-hoc designs. Some have been very successful at detecting new,
unknown viruses. A few (see endnote 5) have nearly achieved their goals of low false negatives
and zero false positives.

Linear classifiers with a threshold are one of the simpler designs for a heuristic virus detector
(see Figure 1.) Linear classifiers are well understood, generalize well to new inputs, and training
procedures for automatic adjustment of weights are well documented. Human experts have
usually performed selection of the features used as classifier inputs. Kephart et al 2/3/8 describe a
technique for automatically selecting simple static features indicative of the presence of viruses,
namely small sequences of bytes called n-grams. We loosely followed this procedure in our
work. As in previous work, we found that multi-layer networks overfitted the data even if we
used a very small number of hidden units. Overfitting happens when the classifier learns the
training set too well. The resulting classifier performs poorly on data not used for training.

False positives have been one major problem with heuristic virus detectors. Anti-virus vendors
must make a tradeoff between false positives and false negatives. As the sensitivity of the
detector to viruses is increased, the false positive rate generally increases as well. Scanner
designers often resort to a hybrid design, with an over-sensitive detector susceptible to false
positives, and a method of suppressing known false positives. Such a design is a trap, because
after the suppression table starts to become filled with entries for false positives encountered in
the field, the scanner engineers become reluctant to make changes to the heuristics engine for
fear that their customers will encounter an entirely n
ew set of false positives.

We attempted to solve the false positive problem by constructing multiple networks using
distinct, unshared features, and then using a voting procedure, so that more than one network
would have to agree on a positive. This worked remarkably well at eliminating false positives on
our test-set. On reflection, it appears that most false positives issued by file classifiers that use
small n-grams as features are due to the random presence of an n-gram feature in a file.

Figure 1: Single layer neural classifier with threshold
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Classifier training procedures alone cannot learn to avoid random false positives of this type.
With a voting procedure and a voting threshold greater than 1, more than one component
network needs to agree on a false positive for the final output to be a false positive. It is very
unlikely that there will be more than one random false positive on a file.

PREREQUISITES

The procedure we used requires a large collection of uninfected Win32 executable files. By
construction, most uninfected files do not contain any viral features, and we need a reasonable
number of files that do contain viral features on which to train. Unlike endnote 2, we have no
reasonable way to augment our set of uninfected files artificially. To reduce the amount of
effectively random data in the collection, all the install programs that we could find with large
compressed data regions were removed except for one copy of each particular installer. We
eliminate most compressed data because they appear to be random when digested into n-gram
statistics, and pollute the n-gram statistics (for small n-grams) with a ‘floor’ of non-zero counts.
For example, if bigram statistics are gathered over 1 GB of random data, the expected count for
any bigram would be around 16 KB. Our uninfected corpus of 53,902 files was evenly divided
into a training set and a test-set.

Our procedure also requires a collection of infected files, with multiple replicants per virus. The
collection of 72 replicant sets was also evenly divided into a training set and a test-set. Normal
automated analysis tools are used to determine empirically regions of each virus constant across
all instances of the virus. We used these regions as the input data for selection of feature
candidates. They could include decrypted regions of viruses run under emulation, if the detector
would be used in a virus scanner capable of running Win32 executables under emulation. For our
experiments we chose unencrypted viruses and used only regions of the viruses that are scanned.

We conservatively decided to use the entire clean file, rather than just the parts examined by a
virus scanner. This is similar in spirit to the artificial uninfected object set augmentation
described in endnotes 2 and 3, except that we are using real programs. Another potential problem
with using just the parts of files examined by a virus scanner is that it constrains the
development process; changes to the scanning engine could affect the false positive rate in the
heuristic engine.

SELECTION OF FEATURE CANDIDATES

For our experiments we chose 3 and 4 as our n-gram lengths. The later parts of the detector
generation procedure could easily be adapted to use features other than n-grams, or features
more complex than n-grams. Other feature sets could be generated by a human expert (e.g. the
set described by Ször6), or by automated analysis. We have not explored other sorts of automated
feature discovery. Obvious things to try include automated feature extraction from emulator
traces, and automated feature extraction from behavior logs/audit trails.

There are far too many 3-grams and 4-grams in the constant regions of currently known Win32
viruses to use them all as features. Fortunately, most of them are extremely poor at
discriminating between infected and uninfected files, so we pruned out most of them from the
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feature set. We use a simple threshold-pruning algorithm. From the constant parts of each virus,
we select the n-grams which appear in our corpus of uninfected files fewer times than a
threshold T. For our experiments, we chose threshold values less than the values which would be
expected if the uninfected corpus were composed entirely of random data. The uninfected corpus
is not composed of random data, so some n-grams appear less frequently than they would in
random data.

Viruses that have no candidate n-grams are removed from the training set in the next steps. For
n-grams which do not appear in the corpus of uninfected files, we use an estimated count based
on the frequency of the components of the n-gram, as described.4 If a very small pruning
threshold is chosen, use of estimated counts is especially important to usefully rank n-grams.

We do not select features indicative of the absence of viruses. This potential enhancement of the
method remains to be explored. Dmitry Gryaznov5 described heuristics with such negative
features and claimed very good results, so we are hopeful that inclusion of negative features will
be useful. The cover generation parts of the method would need to be altered to allow for nega-
tive features. See Table 3 for results of tests in which we adjusted the feature-pruning threshold.
We conclude that the feature pruning should be as aggressive as feasible. The quality of classifi-
ers depends a great deal on the quality of the features used to build them.

COVER GENERATION

We use a greedy algorithm to generate C-independent, complete n-gram 1-covers of the virus
training set. A complete 1-cover consists of a set of features (n-grams) selected such that at least
one feature is present in each virus. The algorithm is ‘greedy’ because at each selection step, the
algorithm selects the unused feature that covers the most remaining uncovered viruses. We
generated 8 covers for our experiments. N-grams are not reused, so a limited number of covers
can be generated. Eliminating reuse of n-gram features increases the probability that the indi-
vidual networks will be independent. Our method does not work if there is a high degree of
correlation between classification errors by the voted networks.

We did not attempt to generate optimal covers. The greedy algorithm has the property that it
preferentially selects features that cover as many viruses as possible. This is a key feature of the
method; we want the method to select ‘strong’ features that are found in many different viruses.
Optimal (or near optimal) covers will be tried in future work. Optimal covers may make more
efficient use of the usable n-gram feature data, and allow more covers to be generated from the
same quantity of data.

We tried using incomplete covers as well. In an incomplete cover, the features do not cover all
viruses. For example, if we only use features that cover two or more viruses, the feature set
might not cover some viruses. Nets based on incomplete covers had a higher false negative rate
on the test set than covers based on complete covers. This may be due to the fact that many
viruses are trivial variations on other viruses, and so coincidentally share randomly chosen byte
sequences with their variants. Nets based on incomplete covers appear to have lower false posi-
tive rates in our tests. They have fewer n-gram features and hence should have fewer random
false positives.
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GENERATION OF NEURAL NETWORK INPUT VECTOR SETS

We constructed input vector sets for each of the 8 covers. Each vector consists of values for each
feature for a particular exemplar (values consist of counts for each n-gram feature in the virus
sample or clean sample) and the correct output value (0 or 1 for our networks). Input sets are
constructed for both the test and training set. A fictitious example of an input vector for a virus is

2.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 1

TRAINING THE NETWORKS

We used linear networks. The number of viruses used in our experiments was too small to sup-
port multi-layer networks, according to the usual rules of thumb. We tried multi-layer networks
anyway, and as expected saw overfitting even with a small number of hidden units. We expect
that multi-layer networks will perform better as more Win32 viruses appear. (For 32 features and
4 hidden units, the number of exemplars should be significantly larger than O(32*4).)

Typical back-propagation training software (see endnote11) was used to train the linear net-
works. We save the computed outputs for each trained network for every vector in its test and
training sets. The outputs are squashed through a sigmoid output unit, as shown in Figure 1, and
take on continuous values between 0.0 and 1.0 inclusive:

sigmoid(x) = 1.0/(1.0+exp(-x));

SELECTING OUTPUT THRESHOLD

The network training software we use tries to minimize error over the training set, but this is not
the same as minimizing discrete classification error counts. We sweep through a range of
possible output thresholds (between 0 and 1) to find a threshold which minimizes total
classification errors across all the individual networks and all the training inputs, giving equal
weight to infected and uninfected errors.

For a particular input vector, if the output O is less than threshold OT, then the discrete output is
0 (uninfected), else the discrete output is 1 (infected). We tried using different thresholds for
each linear network but settled on a single threshold for all the linear networks. The single
threshold value used in the initial experiments described below was set to 0.65 for 4-gram inputs
and 0.5 for 3-gram inputs. In subsequent experiments with the training and test sets swapped, the
corresponding values were 0.575 for 4-grams and 0.4 for 3-grams.

The use of an output threshold or sigmoid (we use both) means that combinations of individual
linear networks are not linear (i.e. can compute non-linear functions of the input). Combinations
of completely linear networks are equivalent to a single larger linear network. We have found
that a single large linear network does not perform as well as a non-linear combination of
smaller networks (see Table 3).



56 • ARNOLD & TESAURO, AUTOMATICALLY GENERATED WIN32 HEURISTIC VIRUS DETECTION

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

SELECTING VOTING THRESHOLD

We use voting to combine the outputs from each network into a single result. For a voting
threshold V and networks N1,...N8, if N1+N2+...N8 > V, then output value is 1 (infected), else
output value is 0 (uninfected) (see figure 2). The voting threshold is selected by sweeping across
the possible vote threshold values (1 to 8) and selecting a threshold with zero false positives and
minimum false negatives on the training set.

We conservatively increment the threshold by one to further minimize false positives due to an
n-gram appearing in a clean file by chance. Effectively we are forming a type of multi-layer
perceptron (MLP)11 that is easily tuned to minimize specific types of misclassifications.

See Table 1 and Table 2 for the voting results for some of our tests. The results for 4-gram fea-
tures are convincing; the voting appears to be able to eliminate false positives with a moderate
effect on the false negative rate. 3-gram features appear to be too short to classify Win32 viruses;
the false negative rate is too high at a voting threshold sufficient to eliminate false positives.

COMBINING TRAINING AND TEST-SETS

While not rigorous, it may be useful to combine the test-set and training set and rebuild the
networks, using thresholds similar to those empirically determined in the previous steps with a
split training and test set. The hope is that the combined sets will result in a classifier more
powerful than one built on half the full set of uninfected and infected files, but with similar false-
positive characteristics.

A more rigorous way of attacking this problem would be to use multiple random 90/10 partitions
of the infected/uninfected data rather than a single 50/50 partition. Thresholds could be selected
over each 90/10 partition and the thresholds averaged. We have not yet attempted this later
approach.

Figure 2: Combining individual networks with voting. Each individual network outputs a 1 or 0.
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1 of 8 2 of 8 3 of 8 4 of 8 5 of 8 6 of 8 7 of 8 8 of 8
Single Large

Network

TrnFPos 12; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0

TrnFNeg  0; 7  0; 0  1; 0  1; 1  3; 6  8; 8 11;11 17;14  0; 0

TstFPos 50;29  0; 3  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0

TstFNeg  3; 0  3; 4 10;13 15;15 16;17 18;19 20;21 22;23 14;15

Table 1: Effect of voting threshold on false positives and negatives for 8 single-layer networks using 4-gram
features. The networks use complete covers. Training and test sets each contain 36 infected and approximately
27,000 uninfected exemplars. The values are misclassification counts for training false positives, training false
negatives, test false positives, and test false negatives. Results after semicolon are after swapping test-set and
training set. Note a sign of overfitting with the large network; there is a large difference between the training

false negative count(0) and the test false negative count (14).

1 of 8 2 of 8 3 of 8 4 of 8 5 of 8 6 of 8 7 of 8 8 of 8
Single Large

Network

TrnFPos  5; 6  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0;0

TrnFNeg 14;13 22;18 25;22 32;29 32;34 36;36 36;36 36;36 19;18

TstFPos 24;24  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  7;4

TstFNeg 15;17 23;22 26;26 36;30 36;31 36;36 36;36 36;36 22;23

Table 2: Effect of voting threshold on false positives and negatives for 8 single-layer networks using 3-gram
features. The values are misclassification counts for training false positives, training false negatives, test false

positives, and test false negatives. The exemplar sets were heavily dominated by uninfected exemplars. The
networks use complete covers. Results after semicolon are after swapping test-set and training set. The single

large network did not achieve zero false positives on the test-set.

CONCLUSIONS

Results so far indicate that detectors generated by this procedure are not sufficient to serve as the
sole Win32 virus detection heuristics in a scanner. They do appear to be good enough to be very
useful as an augmentation of expert-designed heuristics, and they would serve as sole heuristics
were nothing else available. Similarly, expert-designed heuristic features would very likely be
useful as additional features in an otherwise automatically generated network.

False positives can occur for several reasons. The method described in this paper provides a way
of greatly reducing false positives caused by random appearance of features in uninfected files.
Uninfected files may legitimately contain some characteristics similar to those in viruses.
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Our experience with a similar, simpler boot virus classifier was that certain uninfected boot
sectors were functionally similar enough to viruses to cause a false positive.2

We do not have enough experience with the voting method to know whether it will suffer from
similar problems in the field.

Heuristics based on behavioural features found during dynamic program analysis (e.g. emula-
tion) would be more resistant to this type of false positive, as would heuristics based on features
found during audit trail analysis. Related research into the automated discovery of features in
audit trails has had limited successes so far. See endnote 10 for an example of the state of the art
in audit trail analysis.

Sometimes files in the field contain fragments of viruses. This may be due to an incomplete
repair, or to incomplete virus infection, or to the vagaries of the file system on a machine that
once was infected, or due to a naïve implementation of a virus detector which contains
unencrypted fragments of virus, or for other reasons. Static heuristics are vulnerable to false
positives on these types of files. To a great extent, the virus-scanning engine (into which
heuristics are fitted) can limit some of these types of false positives by scanning only active
regions of files.

In some situations, lower thresholds and hence lower false negative rates and higher false
positive rates might be acceptable. For example, anti-virus vendors receive a steady stream of
samples from customers. Only a fraction of these samples are infected by viruses known to virus
scanners. Heuristics with high false positive rates might be acceptable as an aid in sorting the
remainder of these queues. In general a high false positive rate is more acceptable when real
positives (undetectable by other inexpensive means) are more common. A high false positive
rate may also be acceptable if it does adversely not affect users.

The technique described can be used for other types of viruses, so long as we have an adequate
collection of uninfected files and different viruses to train on. The general rule of thumb in
classification is that the number of adjustable parameters in a classifier (weights, in a neural
network) should be substantially less than the number of training exemplars. For a linear
network, the adjustable parameters are the weights associated with each feature.

With a small feature set of 16–32 features, automated training will work, without overfitting, if
there are a larger number of viruses and clean files which contain the features. Multi-layer
networks would require substantially more viruses. For a network with 1 hidden layer, the
number of parameters is approximately number of features times number of hidden units. For a
small network with 32 features and 4 hidden units, the number of viruses would need to be
roughly 128 or larger.

In the immediate future, we plan to do more runs with random test and training set partitions, to
validate our method of selecting the voting threshold. We need to incorporate the resulting
networks into a real virus scanner. There are several directions near future research could take.
We are interested in training on more viruses, and on training multiple layer networks.

We have not yet tried combining networks based on multiple covers; e.g. voting on the outputs
of 4 networks based on 2-covers. Optimal covers might make better use of the available training
data. An interesting exploratory direction of research is automated discovery of virus features
other than n-grams. Examples include discovery of features in virus scanner emulator traces, in
real-time scanner audit trails, and in system audit trails.
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APPENDIX

Feature pruning is a critical part of this procedure. We performed several tests with adjustments
of the feature-pruning threshold. Results are summarized in Table 3. They suggest that further
work on feature selection and pruning would be useful. For a linear network, the features should
by themselves have reasonable discrimination power between infected and uninfected
exemplars. They should also be frequently found amongst one class or the other. For multi-layer
networks, these constraints might need to be relaxed; a multi-layer network can use weak
features if strong features can be constructed from combinations of the weak features.

In Table 4, we show an example of threshold selection for a single large linear network. The
network is really too large for our training set, and overtraining appears to result. The results for
the swapped test and training set are substantially different than the results for the unswapped
sets, which is not confidence inspiring. It would be interesting to try tests with multiple random
partitions of the test and training set.

Pruning
T = 2

Pruning
T = 4

Pruning
T = 8

Pruning
T = 16

TrnFPos 0 0 0 0

TrnFNeg 1 13 13 23

TstFPos 0 0 0 0

TstFNeg 10 15 16 20

Table 3: Effect of feature pruning threshold T on performance of resulting classifiers, each consisting of 8 voted
single-layer networks using 4-gram features. Any viral 4-grams appearing more than T times in the uninfected

training data are removed from the list of candidate features. The values are misclassification counts for training
false positives, training false negatives, test false positives, and test false negatives. From this we conclude that
aggressive feature pruning is important, and that highly discriminating features are essential for a linear net-

work.

T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9

TrnFPos  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0

TrnFNeg  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0  0; 0

TstFPos 12; 2  7; 0  3; 0  2; 0  2; 0  2; 0  0; 0  0; 0  0; 0

TstFNeg 12;13 12;14 13;15 14; 16 14;16 14;16 14;16 14;17 14;17

Table 4: Adjusting the threshold of a single large linear network, based on 8 complete 4-gram covers. The values
are misclassification counts for training false positives, training false negatives, test false positives, and test false
negatives. Results after the semicolon are after swapping test set and training set. Note a sign of overfitting; there

is a large difference between the training false negative rate and the test false negative rate.
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